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NOMENCLATURE

A constant parameter defined by equation (41), A = −
+
1

4 Ω

f ∆0( ) optimization function, equation (37)

g n∆0( ) iteration function, equation (38)

g generalized gravitational constant (magnitude of the sum of gravitational and
coordinate system acceleration vectors)

hi heat transfer coefficient inside the cylinder

hfg heat of fusion

kw thermal conductivity of the cylinder wall

ṁ mass flow rate

ṁNu mass flow rate (per unit length of cylinder) predicted by Nusselt model

Nu Nusselt number of fluid in the cylinder, Nu
h r
k
i i

w
= 2

p pressure

Q heat transfer rate (per unit length of half-cylinder)

QNu heat transfer (per unit length of half-cylinder) predicted by Nusselt model

ri cylinder inner radius

ro cylinder outer radius

Re Reynolds number of fluid in the cylinder

Tb bulk temperature of cooling fluid inside the cylinder

Tw outer cylinder wall temperature

Tsat saturation temperature

u x component of velocity

x coordinate on the cylinder surface
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y coordinate perpendicular to the cylinder surface

z vertical distance from the uppermost point on the outer cylinder wall

δ thickness of the liquid layer

δNu thickness of the liquid layer predicted by Nusselt model

Θ dimensionless heat transfer rate defined by equation (43),

Θ =






−( )









− −

Q h
g k T T r

ghfg
sat b o

fg

ρρ
µ

µ
ρρ

ˆ
ˆ3

3
1

3

4

ΘNu dimensionless heat transfer rate predicted by Nusselt model, defined by equation (42),

ΘNu Nu fg
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∆ dimensionless liquid film thickness defined by equation (17),

 ∆ =

−( )









δ

µ
ρρ

3
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fgˆ

∆o dimensionless liquid film thickness at the top of cylinder

∆Nu dimensionless liquid film thickness predicted by Nusselt model

Λ limit defined by equation (36), Λ ∆= ( )→φ π ϕlim sin3

ΛNu limit defined by equation (30), Λ ∆Nu Nu= ( )→φ π ϕlim sin3

µ dynamic viscosity of liquid

ρ density of liquid

ρv density of vapor

ρ̂ density difference, defined by equation (6), ρ̂ ρ ρ= − v



v

ϕ angle measured between cylinder surface normal and vertical, ϕ = 0  on top of
cylinder

χ dimensionless temperature, defined by equation (31), χ =
−( )
−( )

T T

T T
sat w

sat b

Ω dimensionless parameter defined by equation (18),
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−( )









−
r

h r

r

k
k

k T T r

gh
o

i i

o
r

r

w

sat b o

fg

o

i
ln

ˆ
3

1

4µ
ρρ



ANALYSIS OF CONDENSATION ON A HORIZONTAL CYLINDER WITH
UNKNOWN WALL TEMPERATURE AND COMPARISON WITH THE

NUSSELT MODEL OF FILM CONDENSATION

Parviz A. Bahrami

Ames Research Center

SUMMARY

Theoretical analysis and numerical computations are performed to set forth a new model of film
condensation on a horizontal cylinder. The model is more general than the well-known Nusselt
model of film condensation and is designed to encompass all the essential features of the Nusselt
model. It is shown that a single parameter, constructed explicitly and without specification of the
cylinder wall temperature, determines the degree of departure from the Nusselt model, which
assumes a known and uniform wall temperature. It is also shown that the Nusselt model is reached
for very small, as well as very large, values of this parameter. In both limiting cases the cylinder
wall temperature assumes a uniform distribution and the Nusselt model is approached. The
maximum deviations between the two models is rather small for cases which are representative of
cylinder dimensions, materials and conditions encountered in practice.

INTRODUCTION

Condensation of saturated vapors on solid surfaces under conditions encountered terrestrially and
during space flight is of great importance in application of heat and mass transfer analyses. The early
heat and mass transfer literature for condensing fluids contains many insightful analysis of the
physics involved, as evident in reference 1. The well known Nusselt model of film condensation on
a horizontal cylinder is perhaps the most important one, owing to its fundamental geometry. It
assumes that a uniform wall temperature distribution in the cylinder prevails. Predictions of the heat
transfer rates are based upon this temperature which is presumed to be known, (ref. 2). However, the
cylinder wall temperature for this problem is generally not known, and one would rather deal with
the bulk temperature of the cooling fluid inside the cylinder. The dynamics of the heat and mass
transfer processes determine the wall temperature distribution and, therefore, the wall temperature
can not be specified a priori, as assumed in the Nusselt model.

The aim of the present analysis is to set forth a new and more complete model of film condensation
on a horizontal cylinder, where no assumptions are made to explicitly specify the wall temperature.
The new model will be compared with the Nusselt model to determine the extent of differences in
the heat and mass transfer predictions for conditions most widely encountered in horizontal cylinder
condensers.
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THE ANALYSIS

The velocities in condensing fluids are generally very small such that, the inertial forces may be
ignored in comparison to other forces, Eckert (ref. 3). Furthermore, the governing equations are
distinctly boundary-layer in nature, Schlichting (ref. 4). A balance between the pressure, viscous and
body forces within the condensing film prevails and the pressure within the condensing film is that
of the quiescent saturated vapor away from the cylinder. The thickness of the condensing film is
much smaller than the cylinder radius. Therefore, it is convenient to employ a curvalinear coordinate
system in which the abscissa x lies on the cylinder surface and the ordinate y is perpendicular to and
measured from the surface.

With these assumptions, the Navier–Stokes equation of motion for this problem can be reduced to:

µ ρ ϕd u

dy

dp
dx

g
2

2 0− + =sin (1)

Denoting the distance from the uppermost point on the cylinder directly downwards by z,

z r r
x
r

= −( ) = −




0 0

0
1 1cos cosϕ (2)

one may write,

dp
dx

dp
dz

= sinϕ (3)

But, as noted earlier, the pressure within the condensing film is that of the quiescent saturated vapor
away from the cylinder,

dp
dx

gv= ρ ϕsin (4)

By combining equations (1) and (4),

µ ρ ρ ϕd u

dy
gv

2

2 = − −( ) sin (5)

and denoting the density difference by ρ̂ ,

ρ̂ ρ ρ= − v (6)

equation (5) can be integrated:
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− = + +u
g

y c y c
ˆ
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ρ
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2
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1 2 (7)

The no-slip boundary condition at the outer tube wall, u = 0 at y = 0, eliminates the second
integration constant, c2 . The shear force at the liquid-gas interface is taken to be negligible due to
small viscosity of the vapor relative to that of the liquid, leading to evaluation of the first integration
constant, c1.

du
dy

y= =0, δ (8)

c
g

1 = −
ˆ
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ρ
µ

ϕδ (9)

u
g y y= −
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22
2
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The mass flow rate in the condensed layer at any x is:

˙
ˆ

sinm udy
g= =∫ρ ρρ

µ
ϕδ

δ

0

3

3
(11)

so that,

dm
g

d˙
ˆ

sin= ( )ρρ
µ

δ ϕ
3

3 (12)

is the incremental increase in the mass flow rate at any x. The heat transfer rate is simply,

dQ h dmfg= ˙ (13)

Using the series resistance concept for the fluid layer, the cylinder wall and internal heat transfer,
and assuming that the internal heat transfer coefficient hi is an appropriate mean value, one may
write,

 dQ
T T

h r d

r
r

k d kr d

sat b

i i
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w o
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ϕ ϕ

δ
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ln
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By carrying out the differentiation in equation (12) and using equations (13) and (14) we get,
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The boundary condition is due to the symmetrical film thickness at the top of the of the cylinder, i.e.

d
d

δ
ϕ

ϕ= =0 0, (16)

Now, by introducing a dimensionless film thickness ∆
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and a dimensionless parameter Ω ,

Ω = +

















−( )









−
r

h r

r
r
r

k
k

k T T r

gh
o

i i

o
o

i

w

sat b o

fg

ln

ˆ
3

1

4µ
ρρ

(18)

equation (15) gives,

3
1

1

3 4∆ ∆ ∆ Ω
∆

sin cosϕ
ϕ

ϕd
d

+ =
+

(19)

Rearranging equation (19) results in a first order nonlinear ordinary differential equation, in a
suitable form for Runge–Kutta numerical integration:

 
d
d
∆ ∆ Ω

∆

∆
ϕ

ϕ ϕ= ( )
+
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3 1 4sin cos (20)

The boundary condition, equation (16) is transformed into,

d
d
∆
ϕ

ϕ= =0 0, (21)

which, when used in the differential equation (19) gives,
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∆ Ω
∆

=
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(22)

Here, ∆0  denotes the value of ∆  at ϕ  = 0 and can be evaluated once the parameter Ω  is specified.
At this point it is apparent from reference 2 that equation (20) is identical to the one obtained from
the Nusselt model, when Ω → 0 .

Recasting the Nusselt Model in Terms of the Variables of the Present Analysis

In order to make a precise comparison of the predictions of the present model to those of the Nusselt
Model, one must first recast the Nusselt model in terms of the variables of the present model. If a
relationship between Tb  in the above analysis and Tw  in the Nusselt model could be obtained, one
could compare the numerical solutions of equation (20) to the results of the Nusselt model.

Applying the series-resistance concept again,
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But,

Q m hfg= ˙ π (24)

where, ṁπ  is the mass-flow rate as ϕ π→ , and by using equation (11),

˙ lim
ˆ

sinm
g

π
φ π

ρρ
µ

δ φ ϕ= ( )
→ 3

3  (25)

Q h
g

fg= ( )
→

ρρ
µ

δ φ ϕ
φ π

ˆ
lim sin

3
3 (26)

 A limit is imposed since, the mass flow crossing ϕ π=  is zero and not a representative of the
condensed mass flow rate.

Equation (26) can be written in terms of ∆Nu  and Tw , by noting that in the present model as
kw , hi→∞ , T Tw b→ , a constant and in effect, the Nusselt’s model is approached. Therefore, Tw
replaces Tb for ∆ ∆= Nu .
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Where ΛNu denotes the limit:

Λ ∆Nu Nu= ( )
→
lim sin

φ π
ϕ3 (30)

Using the definition for Ω  and introducing a dimensionless temperature χ ,

χ =
−( )
−( )

T T

T T
sat w
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one obtains the following equation which will be utilized later in the analysis:

1

3
4
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ΩΛNu (32)

Writing equation (28) in terms of ΛNu, χ  and T Tsat b−( ) , one obtains:
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Similarly for equation (26), one obtains:
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where, in tandem with equation (30),

 Λ ∆= ( )
→
lim sin

φ π
ϕ3 (35)

We note that comparison of QNu and Q  can now be made, once the value of Ω  is specified and the
integration of equation (20) is carried out.

Numerical Solution

A Runge–Kutta numerical integration technique was used to integrate equation (20) from ϕ = 0  to
ϕ = °179 99. . This method is designed to approximate the Taylor series method without requiring
explicit definition or evaluations of derivatives beyond the first. The approximation is obtained at
the expense of several evaluations of the function. Reference 5 describes the method in detail and
provides a framework for a subroutine for solving initial value problems of ordinary differential
equations. A modern modification to the classical Runge–Kutta technique has been employed to
control the step size . Since only one solution value is required for calculation of the next, the
method is self-starting. It requires six function evaluations per step. Four of these function values are
combined with one set of coefficients to produce a fourth-order method, and all six values are
combined with another set of coefficients to produce a fifth-order method. Comparison of the two
values yields an error estimate which was used for step size control. The boundary condition at
ϕ = 0appears as an initial condition, where integration over a specified interval was performed in

one or many subintervals. Specification of 
d
d
∆
ϕ

ϕ= =0 0,  is not an essential part of the routine,

however, since the denominator of equation (20) contains a singularity at ϕ = 0 , 
d
d
∆
ϕ

 was set to zero

 at this point. Once Ω  was specified, ∆0  was calculated and the integration was carried out. Local
error of 10 5−  and 10 8−  yielded identical values of ∆  up to the seventh significant digit.

Calculation of ∆0

Equation (20) is a quatic equation and in general may possess multiple roots. The roots, however,
may be real or complex conjugates. Real negative roots are not physical and complex roots are not
within the scope of consideration of the present work. Here interest lies with the particular solutions
(i.e., positive real roots) which enable comparison of the present model with the Nusselt model of
film condensation. Inspection of equation (22) reveals that two real and two complex solutions can
be obtained by considering its resolvent cubic equation, as described in reference 6. Furthermore, the
real positive roots are equal. During attempts to integrate equation (20) for Ω > 0 , it was discovered
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that ∆0  had to be specified to a high degree of accuracy to avoid incompatibility between the initial
value and the differential equation. A successive approximation scheme was devised for this purpose
by letting,

 f ∆ ∆
Ω
∆0

0
0
4 1 1 0( ) = +






− = (36)

and

0 0 0 0
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1 4
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where 0
n∆  denotes the n-th approximation to ∆0 , the function g n

0∆( ) is the iteration equation and A
is a constant. Then,

d
d

g
n

n n n

0
0 0 04 3 1

3 2

∆
∆ Α ∆ ΑΩ ∆( ) = ( ) + ( ) + (38)

For 
d

d
g

n
n

0
0 0

∆
∆( ) =  one may choose 0

0 1∆ =  as a starting trial value, and convergence of the

successive approximations can be expected.

4 3 1 0Α ΑΩ+ + = (39)

Therefore,

Α
Ω

= −
+

1
4 3

(40)

Specification of Ω

In order to specify values of Ω  which are representative of cylinder dimensions, materials and
conditions encountered in practice, a simple survey was conducted. Cylinder diameters between
0.625 and 1.25 inches and wall thicknesses of 0.045 and 0.065 inches are most commonly used in
terrestrial applications of horizontal tube condensers. The pipe materials are usually admiralty brass
or stainless steel. It was necessary to obtain only approximate or orders of magnitude of various
parameters. Standard correlations of turbulent pipe flow, Eckert (ref. 3), were used to evaluate the
Nusselt number Nu, the cylinder internal heat-transfer coefficient hi  and finally, the parameter, Ω .

For conditions of atmospheric pressure for saturated water vapor and Reynolds numbers, based on
cylinder diameter, ranging between 104 and 105 , various calculations were carried out. A sample of
the results is presented in Table 1 to highlight the expected range of values for Ω .
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Table 1.

Re Nu h W K mi / − 2 Ω

10,000 104 2.561 3.05

20,000 185 4,558 1.73

30,000 260 6,412 1.24

40,000 332 8,181 0.98

50,000 401 9,892 0.82

100,000 726 17,921 0.47

It should be noted that, the term in Ω  containing kw  is one or two orders of magnitude smaller than
that containing hi . Therefore, hi  is the dominating parameter.

COMPARISON AND DISCUSSION OF THE RESULTS

In order to set forth a precise comparison of the heat transfer predicted by the present model and the
Nusselt model, one may define two new heat transfer rates with the aid of equations (33) and (35) by
denoting,

ΘNu Nu fg
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fg
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g k T T r
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(41)

and,
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fg
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ρρ

ˆ
ˆ3

1
3

43
(42)

These heat-transfer rates are dimensionless and are closely related to the liquid film thickness at the
base of the cylinder. As described in the numerical solution section, integration of equation (20),
provided the values of Λ  for parametric values of Ω . As noted earlier, for Ω = 0  the Nusselt model
is reached with ΛNu = 2 53113. . Using this value, equation (32) can be employed to obtain the
corresponding values of χ , for parametric values of Ω . A Summary of the results is presented in
Table 2 for eight parametric values of Ω  from zero to infinity. The corresponding values of χ  are
also listed in the table.
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Θ ΛNu Nu= χ
3
4 (43)

 Θ Λ= (44)

Table 2.

Ω χ ΘNu Θ % difference

0.0 1.000 2.53113 2.53113 0.00

0.5 0.693 1.92249 1.91545 0.36

1.0 0.515 1.53876 1.52224 1.07

1.1 0.486 1.47330 1.46248 0.74

2.0 0.320 1.07960 1.06326 1.26

3.0 0.221 0.81585 0.80991 0.73

4.0 0.165 0.65528 0.65135 0.60

∞ 0.000 0.00000 0.00000 0.00

It is apparent that the Nusselt model is in notable agreement with the present analysis. As may be
expected, deviations from the Nusselt model, however small, do appear to exist. The maximum
deviations are of order one percent and correspond to the moderate values of Ω  in Table 2. This is
not a fortuitous outcome. The range of values for various parameters were chosen to span two
limiting cases. First, as the values of Ω  approach zero, the deviations in heat transfer also tend to
vanish. This may be attributed to progressively larger values of hi  which tend to dictate Tw  to
approach Tb , a constant. On the other hand, at large values Ω , hi  tends to be small and low heat-
transfer rates are expected. The wall temperature Tw  again will assume a constant value, close to
that of the saturated steam. These limits, of course, can be reached by the influence of all variables
contained in Ω  and not just hi . In both limiting cases the cylinder wall temperature assumes a
uniform distribution and the Nusselt model is approached. The precision by which the Nusselt model
approximates the present analysis, clearly testifies to the insight often set forth by the old masters.
Much can be learned by careful analysis of their assumptions and methods.
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